Emerging Technology Trends

Emerging Technology Trends




Emerging technologies are technologies that are perceived as capable of changing the status quo. These technologies are generally new but include older technologies that are still controversial and relatively undeveloped in potential, such as preimplantation genetic diagnosis and gene therapy which date to 1989 and 1990 respectively.
Emerging technologies are characterized by radical novelty, relatively fast growth, coherence, prominent impact, and uncertainty and ambiguity. In other words, an emerging technology can be defined as "a radically novel and relatively fast growing technology characterised by a certain degree of coherence persisting over time and with the potential to exert a considerable impact on the socio-economic domain(s) which is observed in terms of the composition of actors, institutions and patterns of interactions among those, along with the associated knowledge production processes. Its most prominent impact, however, lies in the future and so in the emergence phase is still somewhat uncertain and ambiguous.".
Emerging technologies include a variety of technologies such as educational technologyinformation technologynanotechnologybiotechnologycognitive science, psychotechnology, robotics, and artificial intelligence.
New technological fields may result from the technological convergence of different systems evolving towards similar goals. Convergence brings previously separate technologies such as voice (and telephony features), data (and productivity applications) and video together so that they share resources and interact with each other, creating new efficiencies.
Emerging technologies are those technical innovations which represent progressive developments within a field for competitive advantage; converging technologies represent previously distinct fields which are in some way moving towards stronger inter-connection and similar goals. However, the opinion on the degree of the impact, status and economic viability of several emerging and converging technologies.

Key Trends
1.     current trends
2.     emerging trends

                                                                                                                                                                                    
Current trends

1.     APIs




In computer programming, an application programming interface (API) is a set of subroutine definitions, protocols, and tools for building software. In general terms, it is a set of clearly defined methods of communication between various components. A good API makes it easier to develop a computer program by providing all the building blocks, which are then put together by the programmer. An API may be for a web-based system, operating systemdatabase system, computer hardware, or software library. An API specification can take many forms, but often includes specifications for routinesdata structuresobject classesvariables, or remote callsPOSIXWindows API and ASPIare examples of different forms of APIs. Documentation for the API is usually provided to facilitate usage and implementation.


2.     AI







Artificial intelligence (AI), sometimes called machine intelligence, is intelligencedemonstrated by machines, in contrast to the natural intelligence displayed by humans and other animals. In computer science AI research is defined as the study of "intelligent agents": any device that perceives its environment and takes actions that maximize its chance of successfully achieving its goals. Colloquially, the term "artificial intelligence" is applied when a machine mimics "cognitive" functions that humans associate with other human minds, such as "learning" and "problem solving".
The scope of AI is disputed: as machines become increasingly capable, tasks considered as requiring "intelligence" are often removed from the definition, a phenomenon known as the AI effect, leading to the quip, "AI is whatever hasn't been done yet." For instance, optical character recognition is frequently excluded from "artificial intelligence", having become a routine technology. Capabilities generally classified as AI as of 2017 include successfully understanding human speech, competing at the highest level in strategic game systems (such as chess and Go), autonomous cars, intelligent routing in content delivery network and military simulations.
Artificial intelligence was founded as an academic discipline in 1956, and in the years since has experienced several waves of optimism, followed by disappointment and the loss of funding (known as an "AI winter"), followed by new approaches, success and renewed funding. For most of its history, AI research has been divided into subfields that often fail to communicate with each other. These sub-fields are based on technical considerations, such as particular goals (e.g. "robotics" or "machine learning"), the use of particular tools ("logic" or artificial neural networks), or deep philosophical differences. Subfields have also been based on social factors (particular institutions or the work of particular researchers).
The traditional problems (or goals) of AI research include reasoningknowledge representationplanninglearningnatural language processingperception and the ability to move and manipulate objects. General intelligence is among the field's long-term goals. Approaches include statistical methodscomputational intelligence, and traditional symbolic AI. Many tools are used in AI, including versions of search and mathematical optimizationartificial neural networks, and methods based on statistics, probability and economics. The AI field draws upon computer sciencemathematicspsychologylinguisticsphilosophy and many others.
The field was founded on the claim that human intelligence "can be so precisely described that a machine can be made to simulate it". This raises philosophical arguments about the nature of the mind and the ethics of creating artificial beings endowed with human-like intelligence which are issues that have been explored by mythfiction and philosophy since antiquity. Some people also consider AI to be a danger to humanity if it progresses unabatedly. Others believe that AI, unlike previous technological revolutions, will create a risk of mass unemployment.
In the twenty-first century, AI techniques have experienced a resurgence following concurrent advances in computer power, large amounts of data, and theoretical understanding; and AI techniques have become an essential part of the technology industry, helping to solve many challenging problems in computer science.
3.     IOT


















The Internet of Things (IoT) is the network of physical devices, vehicles, home appliances, and other items embedded with electronicssoftwaresensorsactuators, and connectivity which enables these things to connect and exchange data, creating opportunities for more direct integration of the physical world into computer-based systems, resulting in efficiency improvements, economic benefits, and reduced human exertions.
The number of IoT devices increased 31% year-over-year to 8.4 billion in 2017 and it is estimated that there will be 30 billion devices by 2020. The global market value of IoT is projected to reach $7.1 trillion by 2020.
IoT involves extending internet connectivity beyond standard devices, such as desktops, laptops, smartphones and tablets, to any range of traditionally dumbor non-internet-enabled physical devices and everyday objects. Embedded with technology, these devices can communicate and interact over the internet, and they can be remotely monitored and controlled.


4.     BOTS











An Internet Bot, also known as web robotWWW robot or simply -bot-, is a software application that runs automated tasks (scripts) over the Internet. Typically, bots perform tasks that are both simple and structurally repetitive, at a much higher rate than would be possible for a human alone. The largest use of bots is in web spidering (web crawler), in which an automated script fetches, analyzes and files information from web servers at many times the speed of a human. More than half of all web traffic is made up of bots.
Efforts by servers hosting websites to counteract bots vary. Servers may choose to outline rules on the behaviour of internet bots by implementing a robots.txt file: this file is simply text stating the rules governing a bot's behaviour on that server. Any bot interacting with (or 'spidering') any server that does not follow these rules should, in theory, be denied access to, or removed from, the affected website. If the only rule implementation by a server is a posted text file with no associated program/software/app, then adhering to those rules is entirely voluntary – in reality there is no way to enforce those rules, or even to ensure that a bot's creator or implementer acknowledges, or even reads, the robots.txt file contents. Some bots are "good" – e.g. search engine spiders – while others can be used to launch malicious and harsh attacks, most notably, in political campaigns.




Emerging Trends

1.     Blockchain


















blockchain, originally block chain, is a continuously growing list of records, called blocks, which are linked and secured using cryptography. Each block contains a cryptographic hash of the previous block, a timestamp, and transaction data (generally represented as a merkle tree root hash). By design, a blockchain is resistant to modification of the data. It is "an open, distributed ledger that can record transactions between two parties efficiently and in a verifiable and permanent way". For use as a distributed ledger, a blockchain is typically managed by a peer-to-peer network collectively adhering to a protocol for inter-node communication and validating new blocks. Once recorded, the data in any given block cannot be altered retroactively without alteration of all subsequent blocks, which requires consensus of the network majority.
Blockchains are secure by design and exemplify a distributed computing system with high Byzantine fault toleranceDecentralized consensus has therefore been achieved with a blockchain.
Blockchain was invented by Satoshi Nakamoto in 2008 to serve as the public transaction ledger of the cryptocurrency bitcoin. The invention of the blockchain for bitcoin made it the first digital currency to solve the double-spending problem without the need of a trusted authority or central server. The bitcoin design has inspired other applications.



2.     Sharing Economy

Sharing economy is an umbrella term with a range of meanings, often used to describe economic activity involving online transactions.Originally growing out of the open-source community to refer to peer-to-peer based sharing of access to goods and services, the term is now sometimes used in a broader sense to describe any sales transactions that are done via online market places, even ones that are business to business (B2B), rather than peer-to-peer. For this reason, the term sharing economy has been criticised as misleading, some arguing that even services that enable peer-to-peer exchange can be primarily profit-driven. However, many commentators assert that the term is still valid as a means of describing a generally more democratized marketplace, even when it's applied to a broader spectrum of services. Alternatively, collaborative consumption or the sharing economy refers rather to resource circulation systems which allow a consumer two-sided role, in which consumers may act as both providers of resources or obtainers of resources. This vision allows for a broader understanding of the sharing economy on the overarching criteria of consumer changing role capacity.


3.     AR















Augmented Reality (AR) is an interactive experience of a real-world environment whose elements are "augmented" by computer-generated perceptual information, sometimes across multiple sensory modalities, including visualauditoryhapticsomatosensory, and olfactory. The overlaid sensory information can be constructive (i.e. additive to the natural environment) or destructive (i.e. masking of the natural environment) and is seamlessly interwoven with the physical world such that it is perceived as an immersive aspect of the real environment. In this way, augmented reality alters one’s ongoing perception of a real world environment, whereas virtual reality completely replaces the user's real world environment with a simulated one. Augmented reality is related to two largely synonymous terms: mixed reality and computer-mediated reality.
The primary value of augmented reality is that it brings components of the digital world into a person's perception of the real world, and does so not as a simple display of data, but through the integration of immersive sensations that are perceived as natural parts of an environment. The first functional AR systems that provided immersive mixed reality experiences for users were invented in the early 1990s, starting with the Virtual Fixtures system developed at the U.S. Air Force's Armstrong Laboratory in 1992. The first commercial augmented reality experiences were used largely in the entertainment and gaming businesses, but now other industries are also getting interested about AR's possibilities for example in knowledge sharing, educating, managing the information flood and organizing distant meetings. Augmented reality is also transforming the world of education, where content may be accessed by scanning or viewing an image with a mobile device. Another example is an AR helmet for construction workers which display information about the construction sites.


4.    Quantum Computing


Quantum computing is computing using quantum-mechanical phenomena, such as superposition and entanglement. A quantum computer is a device that performs quantum computing. They are different from binary digital electronic computers based on transistors. Whereas common digital computing requires that the data be encoded into binary digits (bits), each of which is always in one of two definite states (0 or 1), quantum computation uses quantum bits, which can be in superpositions of states. A quantum Turing machine is a theoretical model of such a computer, and is also known as the universal quantum computer. The field of quantum computing was initiated by the work of Paul Benioff and Yuri Manin in 1980, Richard Feynman in 1982, and David Deutsch in 1985.
As of 2018, the development of actual quantum computers is still in its infancy, but experiments have been carried out in which quantum computational operations were executed on a very small number of quantum bits. Both practical and theoretical research continues, and many national governments and military agencies are funding quantum computing research in additional effort to develop quantum computers for civilian, business, trade, environmental and national security purposes, such as cryptanalysis. A small 20-qubit quantum computer exists and is available for experiments via the IBM quantum experience project. D-Wave Systems has been developing their own version of a quantum computer that uses annealing.


5.    3D Printing










3D printing is any of various processes in which material is joined or solidified under computer control to create a three-dimensional object, with material being added together (such as liquid molecules or powder grains being fused together). 3D printing is used in both rapid prototyping and additive manufacturing (AM). Objects can be of almost any shape or geometry and typically are produced using digital model data from a 3D model or another electronic data source such as an Additive Manufacturing File (AMF) file (usually in sequential layers). There are many different technologies, like stereolithography (SLA) or fused deposit modeling (FDM). Thus, unlike material removed from a stock in the conventional machining process, 3D printing or AM builds a three-dimensional object from computer-aided design (CAD) model or AMF file, usually by successively adding material layer by layer.
The term "3D printing" originally referred to a process that deposits a binder material onto a powder bed with inkjet printer heads layer by layer. More recently, the term is being used in popular vernacular to encompass a wider variety of additive manufacturing techniques. United States and global technical standards use the official term additive manufacturing for this broader sense.

Comments

Post a Comment

Popular posts from this blog

The Burter Puzzle

The Paper Tower

Leadership